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Abstract 

Creating and rendering near real size planets is no easy task. A robust and 
well-designed solution must be implemented. The solution must be able to 
render planets at a distance and close up, whilst taking up no more than the 
average memory available on a standard computer. Additionally, the terrain 
should be aesthetically pleasing and include the use of biomes, water, clouds 
and an atmosphere. If an engine with these features exist, it could be used 
as the backbone for many games. 
 
This project aims to achieve a solution to rendering very large planets, 
including some aspect of realism to the terrain and other phenomena like 
atmospheres and water. It would then be well on the way to creating a 
generic, procedural planet renderer. Furthermore, this report investigates 
methods to assemble the planets into a star system. This future work could 
support large scale distance, and smaller scale distance travelling. 
 
To solve the problem, rigorous research was carried out beforehand. Then 
agile development techniques similar to DSDM were applied - with source 
control to aid, to rapidly iterate features. Due to the timeboxed nature of the 
methodology, features were put on hold if they took too long. This made way 
for other features which may be faster to complete. 
 
The solution in this paper achieves most of the initial objectives. The engine 
can render very large planets, with atmospheres, water, clouds and biomes. 
The engine can be compiled stand alone, for use in other projects which 
supports the idea of a generic planetary renderer. The engine didn’t achieve 
full scale star systems, but the sufficient research has been done in order to 
potentially implement this work in the future. 
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1 Introduction 

1.1 Background and Context 

Procedurally generated planets are, in the context of this project, large scale and 

realistically generated planets. These planets are near real size, like you would find 

in our own solar system. Procedural planets could have a multitude of uses in games 

development. Whether it’s used for an exploration game, or just a visual artefact 

displayed in the sky, it adds considerable value to the user experience. Since 

procedural planets have been popping up in game in recent years, my aim is to 

create a general engine which can be used in many scenarios in games. The engine 

can render planets very far away and close up to suit these different scenarios. 

 

1.2 Scope and Objectives 

The main goal is to create an engine which can generate and render procedurally 

generated planets. These planets can be Earth scale and be viewed from space or 

on the ground. Other objectives include being able to render real phenomena like 

clouds, water and an atmosphere. In addition to planets being randomly generated, 

the seed can be saved as to load in the same generated planet. Furthermore, an 

extra feature would be to render multiple planets and moons which can orbit each 

other, as well as orbiting a star. 

 

1.3 Achievements 

Most of the goals were achieved in this project. The planetary rendering engine 

renders different levels of detail in order for the planets to be viewed up close or from 

a distance. The engine also supports water, clouds and atmospheres. The engine 

does have support for rendering multiple planets orbiting each other, however 

attaching a camera gives visually displeasing effects due to floating point errors. This 

makes it only viable to use in its current state if you were to observe a planet move 

from a distance and not follow it. 
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1.4 Overview of Report 

Chapter 2 investigates literature surrounding the topics required to be able to 

implement the project. 

 

Chapter 3 explains the planning and preparation process underwent, plus potential 

legal and ethical issues. 

 

Chapter 4 describes how the system was designed and relations between classes in 

order to make implementation easy to carry out. 

 

Chapter 5 explains how each specific part of the project was implemented with each 

section describing the steps took to complete that part. 

 

Chapter 6 shows the testing strategy used to ensure that all parts of the engine work 

together and each individual part does its job correctly. 

 

Chapter 7 Goes into depth about how the project was executed, reflecting on what 

went well and what didn’t, it also describes potential future work. 
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2 Literature Review 

2.1 Introduction 

In this chapter is a comparison of the literature on methods associated with level of 

detail geometry, procedural terrain generation and rendering large scale planets. 

 

2.2 Level of Detail Methods 

2.2.1 Continuous LOD Using Quadtrees (CLOD) 

A quadtree is a tree data structure where each node may be 

empty or contain four child nodes, first named by Raphael 

Finkel and J.L. Bentley in 1974. They are flattened versions of 

octrees, where an octree consists of eight child nodes. 

Quadtrees are particularly useful in terrain generation due to 

their ability to split and merge according to the data it contains. 

If terrain geometry is stored in the nodes, it allows a natural 

progression towards creating a terrain LOD system.  

 

The CLOD method described by Ulrich in 2000, uses a 3x3 grid of vertices stored in 

each quadtree node. The vertices on each edge midpoint store an additional value of 

whether it's enabled or not (see Figure 2). Using triangle fans when rendering allows 

skipping of these disabled vertices easily. Vertices are flagged as disabled when a 

neighbouring quadtree node's edge has a lower LOD, this prevents cracks in the 

terrain due to LOD differences. 

 

Figure 1 - 

Visualisation of a 

Quadtree 
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Figure 2 - 3x3 grid of vertices with disabled vertices in black 

 

A similar approach by Jian Wu, 2010 uses a 5x5 grid of vertices per node and 

describes two methods to eliminate cracks. The first method deletes a vertex if an 

adjacent quad is of a lower LOD when rendering. However, this method only works if 

the LOD difference is exactly one. The second method, original to the paper, loops 

through each quad in the grid and detects if the adjacent quad's LOD is greater than 

one. If so, then add it to a list of cracks. Finally, loop through this list and generate 

triangles to fill in the cracks. An optimisation of the first method is the pre-generation 

of these deleted vertices (Andersson, 2009). There is a total of nine permutations for 

LOD differences of one (Figure 3). Therefore, instead of deleting vertices, the index 

buffer is switched to one of these permutations once the combination of 

neighbouring LOD levels is calculated. 

 

 

Figure 3 - The 9 permutations of the geometry due to neighbouring LODs 



- 5 - 

 

2.2.2 Geoclipmaps 

Geometry clipmaps were first implemented by Frank 

Losasso in 2004. The idea is synonymous to texture 

mipmapping, except it generates mipmaps of the 

geometry at many resolutions. Additionally, the method 

exercises the idea of large, complex terrain which is 

where clipmaps come into play. A clipmap is a section of 

a mipmap. If you were to generate mipmaps of complex 

terrain geometry, the data may still be too large, so the 

mipmaps are only generated around the camera position, 

hence the idea of clipmaps. Figure 4 shows an example of a set of Geoclipmaps. 

 

Shortly after the first implementation of geometry clipmaps, a new GPU based 

method was described (Arul Asirvatham, 2005). It aimed to reduce the CPU 

computation time and utilise the GPU further to increase overall performance. It was 

realised that the terrain geometry can be represented as a set of images, allowing 

the work to be done on the graphics card. 

 

Frank Losasso describes that additional work is needed to solve the cracks between 

the LOD levels. To solve this, they provide a morph formula which is applied to 

geometry near the outer boundary of each region. 

 

2.2.3 Geomorphing 

Using any LOD method, the geometry is subject to ‘popping’. This is when a 

transition occurs due to a change in the LOD, so vertices may snap to a slightly 

different position (Wikipedia, 2019). Geomorphing isn’t a LOD technique, just a 

method to stop this popping effect. 

 

To morph the geometry, one extra piece of data needs to be stored, a target 

position. Whenever the LOD changes, the current position is the target position of 

the previous LOD, and the target position is now the next LOD’s final position. As the 

camera position changes, linear interpolation is performed between these two 

Figure 4 - A set of clipmaps 
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positions. This allows the vertices to smoothly move into position. Geomorphing is 

typically carried out using shader techniques, due to performance increase (Wagner, 

2019). 

 

2.3 Procedural Terrain Generation 

2.3.1 Perlin Noise 

Perlin noise is a type of coherent noise used for many 

techniques within computer graphics, but generally to 

increase realism (Perlin, 1983). Some of the applications for 

this include generating procedural textures, procedural 

terrain, clouds and fire. In the context of procedural terrain, a 

huge drawing point of this algorithm is that it can be 

generated the same consistently without storing any terrain 

geometry except for an initial seed value. The obvious trade-

off is that more real-time computation will be needed. 

 

Eighteen years after Ken Perlin's original Perlin Noise paper he published another 

similar algorithm called Simplex Noise (Perlin, 2002). This newer algorithm has less 

computational complexity and fewer directional artefacts. Due to a patent on Simplex 

noise, there was a similar algorithm invented called OpenSimplex noise. 

OpenSimplex uses a slightly different underlying algorithm which produces a 

smoother surface but is slightly slower then Simplex noise. 

 

All these noise algorithms can be expanded to higher dimensions. For example, 

consider a 2-dimensional simplex noise generator, this can produce a static 

procedural texture. But now it's possible to produce a cinematic moving effect by 

expanding it to use 3 dimensions, where the 'z' value is affected by time. The same 

could be done in 4 dimensions, e.g. producing a 3-dimensional effect but scrolling 

the 4th dimension through time to make it animated. 

 

Typically, terrain generation methods include using a 2-dimensional noise generator 

because you only need a height value and an x and y coordinate to produce 3-

dimensional terrain. However, if generating spherical terrain, you can use 3-

Figure 5 - An example 

of 2D Perlin noise 
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dimensional noise sampled at the surface of a sphere to produce the geometry with 

no seams. If this was done with conventional 2-dimensional noise, then there needs 

to be a method implemented to seamlessly wrap the terrain around the sphere. 

There are possible projections to use which could solve this, but regardless there will 

always some form of artefacts or distortion in the geometry. 

 

2.3.2 Diamond Square Algorithm 

The Diamond Square Algorithm is a method of terrain generation and a variation of 

the 3-dimensional version of the Midpoint Displacement Algorithm. Both algorithms 

begin with a grid of vertices of size 2^n+1, where n is the dimension of the terrain. 

The Midpoint Displacement Algorithm will take the two or four vertices depending on 

the dimension, average them and place them in the middle of the averaged points, 

but then offset this new point by a small amount. These steps are then repeated, but 

each time the offset scale is reduced. Though, this method produces square 

artefacts which is what the Diamond Square Algorithm improves upon (Archer, 

2011). The Diamond Square Algorithm splits the step into two: the diamond step and 

the square step. The diamond step uses the corners of the square to produce and 

offset one point in the centre. The square step uses the corners of the square to 

produce and offset four new points in the centre of each square edge. 

 

There are still a couple of limitations of this algorithm. Firstly, it still produces 

artefacts due to calculations are all based on a square or rectangular grid. Secondly, 

it can be difficult to tile the terrain, although still possible. One method could be to 

split the terrain into a grid and apply the algorithm to each grid section, using the 

corners and edges of the adjacent grid’s as seed values. 

 

 

Figure 6 - The steps involved in each iteration of the algorithm 
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2.3.3 Biomes 

The method to create biomes is to use a noise generator as discussed earlier. 

Instead of using the sample values as height values, they are used for moisture (Red 

Blob Games, 2015). Using combined elevation and moisture sampling, biomes can 

be deduced. For example, a grass biome may appear at a moisture value of 0.6 to 

1.0, and an elevation value of 0.2 - 0.5, but mountains may appear and any elevation 

above 0.8. Creating a table of all these values allows a method to map out any 

biome over any moisture and elevation value. To use this, a biome lookup texture 

can be created, this texture is then sent to the shader. To sample the texture on the 

shader, the moisture and elevation can be sent as a 2-dimensional UV. This GPU 

based method has practically no overhead, except for the storing of one extra texture 

globally. This makes it very fast. 

 

An alternative way to render biomes is to start off similar to 

the first method. Two noise maps are needed and can be 

moisture and elevation, or other similar ones. An example of 

a different two maps include temperature and rainfall which 

is what Minecraft uses (Gamepedia, 2019), see Figure 7. 

The major difference is that different noise parameters are 

used. Each biome will have its own unique settings. On the 

CPU, the type of biome will need to be determined in order 

to calculate the height. The hard part of this method is fixing 

the borders between biomes. If they aren’t fixed there may be mountains bordering a 

flat grassland, producing a sheer drop which is totally unrealistic. One method to 

solve this uses Voronoi diagrams (Orr10c, 2018). The definition of this is to split a 

plane into different regions which are based on distance to points in the plane. These 

points can now represent biomes, so the distance from the points can be used as 

interpolation values between the biomes, creating a smooth transition. 

 

Figure 7 - Minecraft’s 

biome map 
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2.4 Planetary Rendering 

2.4.1 Atmosphere 

To render a realistic planetary atmosphere like 

the Earth's you first need to understand why it 

happens in terms of physics. The Earth's 

atmosphere appears blue because blue light is 

scattered by particles within the atmosphere 

(Rayleigh scattering). There is also Mie 

scattering which only applies to larger particles 

within the atmosphere. This same effect can be 

calculated in real-time graphics applications. The 

general method described in GPU Gems 2 (O'Neil, 2006) to render an atmosphere is 

to start off with a sphere which is slightly bigger than the planet and culls the front 

facing triangles, this gives an outline to the planetary body. Next, implement 

volumetric rendering in the vertex shader by shooting a ray out from the camera at 

the atmosphere and sampling various points along the journey. Finally, send these 

accumulated values to the pixel shader where it works out the Mie and Rayleigh 

scattering colours. 

 

2.4.2 Water Surface Rendering 

The basis for any water surface rendering in games starts off with rendering a flat 

plane, or in the context of planets, a secondary sphere around the planet at water 

level. There are multiple methods to make this surface look like water with varying 

levels of complexity. The simplest is to colour the water blue with some alpha 

transparency then add a wave normal map on top. Scrolling the texture gives the 

impression of waves moving, however, this doesn't look too realistic but is good for a 

quick and simple implementation. A second method expands upon the first one, the 

difference is that multiple normal maps are used at different scales, then each map is 

scrolled at different velocities. 

 

The first method will never look completely realistic. The more complex approach is 

to model the real effects which happen when looking at a water surface. The Fresnel 

effect contributes greatly to the appearance of water. When looking at shallow 

Figure 8 - GPU Gems atmosphere 

example 
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angles, the light tends to bounce off the water, so you see a reflection of the sky. 

However, when viewed from above, the light ray goes into the water. This means 

you can sometimes see the bottom of the waterbed (N¨atterlund, 2008). Modelling 

the Fresnel effect, reflection and refraction can produce amazing and realistic 

looking water.  

 

2.4.3 Level of Detail 

In order to merge the idea of LOD terrain and planets, the 

problem of creating seamless spherical terrain needs to be 

solved. One way to do this is using a spherified cube (Pulido, 

2013), where each face of the cube is a quadtree. This links 

in very nicely with CLOD as described earlier. To spherify a 

cube there is a couple of mathematical mappings. The first 

being normalising each point. This means converting each 3D points components to 

a value between 0 and 1. The only possible downside to this method is that there 

isn’t an even distribution of triangles. There will slightly squashed triangles towards 

the edge of each cube face. A better mapping is one described by Math Proofs in 

2005, which produces a much smoother distribution of points. Figure 9 shows this 

mapping. 

 

 

2.5 Summary 

In this chapter is a discussion of various level of detail algorithms, methods of 

generating terrain procedurally and how to render various aspects of a planet. 

Figure 9 - Mathematical 

mapping of a cube to 

sphere 
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3 Project Planning 

3.1 Introduction 

In this chapter are the methods associated with planning the project, including which 

methodology is used, how requirements are mapped out and how source control 

influences the development of the system. Additionally, there are a couple of legal 

issues to look out for. 

 

3.2 Methodology 

The methodology chosen to develop this project is agile based. It is close to the 

Dynamic Systems Development Method (DSDM) (Muslihat, 2018). This is due to 

iterative development, MoSCoW prioritisation and time boxing. Iterative development 

“is a way of breaking down the software development of a large application into 

smaller chunks” (Rouse, 2016). So, in each iteration, features are added which 

builds upon the system. Iterations are often used in conjunction with sprints and 

timeboxes. A sprint is a certain predefined time in which these iterations occur and 

the development during the sprint is reviewed at the end. A timebox is a length of 

time for a particular feature to be completed. 

 

The approach taken in this project uses a pseudo-timeboxed method. There is no 

precise time keeping. Instead, if features are taking longer than previously thought, 

it’s time to switch the feature to work on. This is only valid for lower priority features, 

as sufficient time must be spent on the fundamentals. 

 

3.3 Source control 

Source control is the organised tracking of code during development. It’s especially 

useful when working in teams, but still beneficial even on single person projects. 

Source control allows you to commit changes and commits can be rolled back if 

something didn’t work out. Branches extend the repository from a certain commit. 

Features are usually branched out, so that they can be merged into the main branch 

later. When merging, the source control software will try it’s best to combine source 

files without conflicts, but sometimes conflicts occur and have to be fixed manually. 

Using branches to develop features is especially useful when a feature may not work 
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out very well. In this case, the branch can just be left, and development can continue 

on another branch. The advantage of this is that you don’t have to manually revert 

changes back. 

 

This projects development will use Git as the source control software. There is a 

great Git cloud hosting site called GitHub. Not only is great for backing up the project 

but working on the project on multiple machines is very easy because it can be 

cloned from GitHub locally, and changes are pushed back to the GitHub servers and 

available from other machines. 

 

3.4 Requirements 

3.4.1 Introduction 

This section details the requirements using the MoSCoW technique. The method is 

to implement the must have features first, then work downwards through the list. This 

way, a priority system is in place to prevent the necessary features not being 

implemented due to time constraints. 

 

3.4.2 Must have 

• Level of detail planet with terrain which changes detail based on the camera 

position. 

• Diffuse lighting support. 

 

3.4.3 Should have 

• Planetary atmosphere, this could be tricky due to the complicated maths 

surrounding atmospheric scattering, however there are sample 

implementations for reference. 

• Add dynamically animated clouds, using 3-dimensional/4-dimensional noise. 

• Surface water rendering. 

• Completely smooth terrain with no cracks due to level of detail. 

• Smooth lighting with no seams due to level of detail. 
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3.4.4 Could have 

• Biomes, for example: desert, grassland, mountains. 

• GPU based geomorphing in the terrain, so there is no popping. 

• Multiple planets arranged in a system. 

• Camera centred origin for travelling large distances. 

 

3.4.5 Won’t have 

• Physics, in terms of colliding with the planet. This might be out of the scope of 

the project as the focus is on rendering the planets. 

 

3.5 Tools and Techniques 

There are a variety of renderers available, for example: DirectX, OpenGL and 

Vulkan. The latter two are cross platform, DirectX is Microsoft Windows only. 

Computer games are generally targeted for Windows because the operating system 

market share is Windows dominated (Statista, 2019). There isn’t much demand for 

Linux based games which is why the project uses DirectX. Another option would be 

to use a game engine. Using a well-established game engine would speed up 

development and could target multiple operating systems. This approach was 

considered but for maximum flexibility and performance the project uses purely C++ 

and DirectX. 

 

The integrated development environment commonly used to develop C++ and 

DirectX applications is Microsoft Visual Studio. It contains many debugging tools 

including a graphics debugger. GitHub Desktop will be used for a Git graphical 

interface to assist with source controlling the project. To generate documentation for 

the project, Doxygen will be used. Doxygen works by parsing comments attached to 

source files, it will then produce a HTML documentation for all the classes and 

methods. 

 

3.6 Legal and Ethical Issues 

A possible legal issue is Ken Perlin’s patent on Simplex Noise. The patent is only 

valid however, for image generation. Whereas in this project it’s used for terrain 
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generation. On the other hand, there is a similar project called OpenSimplex noise, 

which is free to use in any scenario. 

 

Lastly, when texturing the planet, only royalty free textures will be used. As a 

developer and not an artist, producing original assets is out of scope. Extra attention 

is paid to finding textures online to ensure there aren’t any copyrights attached to 

them and they state they’re free to use. 

 

3.7 Summary 

This section discussed the methods used throughout the development of the project 

and how certain practices can increase productivity. There is a couple of legal issues 

to note down but there shouldn’t be any issues. 
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4 Design 

4.1 Introduction 

This chapter documents how the main sections of the engine are mapped out in a 

way that it can easily be implemented. There are methods explained to reduce global 

memory consumption and help with the abstraction of low-level code. 

 

4.2 Class Structure 

When designing the system, emphasis was put on designing a firm class structure. 

The principle of dependency inversion is used. This states that high level classes 

should not depend on low level ones as this creates tight coupling. The principle 

states that instead, they should depend on abstractions (Gkatziouras, 2018). 

Throughout the design process there are many interfaces created where there are 

always concrete implementations. Figure 10 shows the class diagram for the 

physical bodies. Physical bodies include objects such as planets and stars. Planets 

and stars, though two different types of objects, still have common properties. These 

could include, but are not limited to: mass, position and velocity. 

 

 

Figure 10 - Class diagram for physical bodies 

 

Now the classes for the main physical bodies are laid out, they still need a method to 

be rendered. A design decision in this project was made to separate out the 
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rendering code from the logic of controlling the bodies. The main reason for this is 

there could be multiple renderers for one body. This is to accommodate the potential 

for another level of detail method in addition to quadtree level of detail. This method 

could be not render quadtrees when the planet is a large distance away, instead 

render just a sphere to save processing time. Hence the decision to support a 

pointer to a renderer rather than implement one within the container class. Figure 11 

shows the class diagram for rendering bodies. The Drawable class is a helper class 

for rendering DirectX geometry to the screen. The SimpleStarRenderer and 

QuadtreeTerrainNode are classes which yield this ability. Also note the dependency 

inversion for the spherical terrain classes. QuadtreeTerrainNode depends on 

SphericalQuadtreeTerrain and vice versa. This is called a circular dependency. To 

solve this, the SphericalQuadtreeTerrain class is ‘inverted’, this means an interface 

is created and it implements it. This way the QuadtreeTerrainNode can depend on 

an abstraction rather than a concrete class, hence avoiding a circular dependency. 

Additionally, circular dependencies are allowed, they just create high coupling, and 

this is something to be avoided in favour of loose coupling. Loose coupling  

is an approach where a class doesn’t need to know how the dependency is 

implemented, instead it just needs to know how to use it. 

 

 

Figure 11 - Class diagram for renderers 

 

 

4.3 Manager Classes 

Manager classes are classes which manage the lifetime of resources. The resources 

which need to be managed in this project are textures and shaders. Manager 
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classes take the bloat away from other engine classes and separate it out into 

secondary interfaces. They manage the creation, deletion, loading, saving and 

clean-up of resources. There is multiple way to handle the clean-up of resources. 

The first being deleting them all at the end of the program. The second is when there 

may be memory constraints, so they may be deleted if the resource hasn’t been 

accessed for a while. 

 

In this project the texture and shader manager classes will be implemented using 

lazy initialisation (Microsoft, 2017). This is where the resource is only loaded until its 

first needed. This allows a very simple implementation as there is no need to preload 

a list of resources at the start of the program, which would otherwise add complexity. 

 

4.4 Helper Classes 

The project will make use of a few classes to help abstract away lower level code. 

The first being the shader class. It’s responsible for loading in a vertex and pixel 

shader pair. Due to shaders being written in High Level Shader Language (HLSL), 

when they’re loaded in it takes some time as the DirectX libraries have to parse and 

compile the shaders. Once the shaders are loaded the buffers need to be stored. 

Due to the two buffers being encapsulated in the class, it’s easy to manage them 

without losing track. Grouping data is one of the main purposes of classes. The 

second helper class is the Drawable class. In a similar fashion to the former helper 

class, there are a few pieces of data which need to be stored, and it’s better if they’re 

stored together. The Drawable class is synonymous to a mesh. The purpose is to 

store the vertex and index data. Traditionally, a model is an instance of a mesh, 

meaning you can render multiple models, but the actual geometry is only stored 

once. In this project there are no multiple instances this time, but the framework is in 

place if there is need to hold a repeating model. 

 

4.5 Summary 

This chapter discussed the fundamental engine design for the project and how it’s 

useful to abstract out particular parts of the code. There are also some important 

memory optimisation techniques are discussed using manager classes. 
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5 Implementation 

5.1 Introduction 

In this chapter you will find the details of the implementation for each area within the 

engine. Code listings of various algorithms are also described. 

 

5.2 Quadtree Planet 

5.2.1 Quadtree basics 

Firstly, to implement LOD terrain we need to start off with a basic quadtree 

implementation. A basic quadtree stores a pointer to each of its four children; these 

children pointers may be null, so in that case it’s a leaf node. The code listing below 

shows the data structure of a quadtree, containing these pointers plus some 

methods to modify the quadtree’s state. 

struct Square 

{ 

    float x, y; 

    float size; 

}; 

 

class TerrainNode 

{ 

        public: 

  enum EQuad { NE, NW, SE, SW }; 

 

            TerrainNode(TerrainNode *parent, Square bounds); 

 

            bool IsLeaf(); 

            void Split(); 

            void Merge(); 

            bool IsRoot(); 

 

        private: 

            Square m_bounds; 

   

  TerrainNode *m_parent; 

            TerrainNode *m_children[4]; 

}; 
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Listing 1 - [TerrainNode.cpp] Stripped down version of the TerrainNode (quadtree) class 

 

The second fundamental is to be able to split and merge node(s) in the quadtree. 

The listing below shows a pseudocode for the split function. The function creates 

four new quadtree nodes at north west, north east, south west and south east. Each 

child node will be a quarter of the size of the parent (half the width and half the 

height creates one quarter). In addition, the split function checks if the node is a leaf 

node (deepest node, with no children). It does this to it doesn’t accidently split a 

node which already has children, and it will propagate down the tree until it finds a 

lead node to split. This makes it a recursive function. 

 

Function Split 

    Return is maximum depth is reached 

     

    If this node is a leaf node 

        Create 4 new nodes at North East, North West, South East, South West 

    Else 

        Foreach child node, call the split function on the child 

Listing 2 - [TerrainNode.cpp] Function to split the node into four more nodes 

 

Lastly, we have the merge function, which is recursive just like the split function. Its 

purpose is to merge four leaf nodes into one node. The merge function should only 

be applied on nodes where its four children are leaf nodes. If the current node 

contains children which aren’t leaf nodes, then it will traverse down the tree until it 

finds a node which its children are leaf nodes. It will then free up the memory of the 

children and reset the pointers which effectively declares the current node as a leaf 

node. 

 

Function Merge 

    Return if this node is a leaf node 

 

    If any child of this node is a leaf node 

        Delete all this nodes’ children 

        Notify all neighbours of this node that an LOD change happened 

    Else 

        Foreach child node call the merge function of the child 
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Listing 3 - [TerrainNode.cpp] Function to merge four nodes into one 

 

Now the basic quadtree structure is in place, the following code creates the root 

node. This node’s bounds range from (-0.5, -0.5) to (+0.5, +0.5). This snippet is 

located in a terrain manager class, which is responsible for storing data which will be 

accessed by many nodes of the quadtree. 

 

TerrainNode *node = std::make_unique<TerrainNode>(null, Square { -0.5f, -0.5f, 1.0f }); 

Listing 3 - [SphericalQuadtreeTerrain.cpp] Creating the root quadtree node 

 

5.2.2 Spherical quadtree terrain 

Firstly, each quadtree node needs to store geometry and be able to render it to the 

screen. There is a helper class called Drawable to isolate the DirectX rendering. It 

handles the initialisation of the vertex and index buffers, plus it provides a pre-render 

function to call DirectX context functions in preparation for rendering. The code 

listing below shows the updated TerrainNode class definition. 

 

struct Square 

{ 

    float x, y; 

    float size; 

}; 

 

struct PlanetVertex 

{ 

    DirectX::SimpleMath::Vector3 position; 

    DirectX::SimpleMath::Vector3 normal; 

    DirectX::SimpleMath::Vector3 uv; 

}; 

 

class TerrainNode : public Drawable<PlanetVertex> 

{ 

        public: 

  enum EQuad { NE, NW, SE, SW }; 

 

            TerrainNode(TerrainNode *parent, Square bounds); 
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            bool IsLeaf(); 

            void Split(); 

            void Merge(); 

  void Generate(); 

            void Render(Matrix view, Matrix projection); 

            void Update(float dt);  

            bool IsRoot(); 

 

        private: 

            Square m_bounds; 

   

  TerrainNode *m_parent; 

            TerrainNode *m_children[4]; 

}; 

Listing 4 - [TerrainNode.hpp] Updated class definition of TerrainNode 

 

Now there is a method to render geometry to the screen, but we still need geometry 

to render. This next code listing provides a way to create a flat plane with support for 

calculating normals. 

 

Function Generate 

    Variable step -> (Bounds.size / Gridsize - 1) 

 

    // Generate vertices 

    Loop y from 0 to gridsize 

        Loop x from 0 to gridsize 

            Add vertex at (Bounds.x + x * step, 0, Bounds.y + y * step) 

 

    // Generate indices 

    Loop y from 0 to gridsize - 1 

        Loop x from 0 to gridsize - 1 

            Add 2 triangles 

 

    // Calculate normals 

    Loop through all faces 

       Calculate normal of face 

       Add normal to 3 vertices of face (they will be normalised in shader) 
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Listing 5 - [TerrainNode.cpp] Generating a flat plane 

 

Finally, the terrain should be spherical. This is done by arranging six quadtrees into a 

cube, then using a mathematical mapping to convert the cube into a sphere. The 

following code listing shows the six quadtrees being constructed in the appropriate 

orientations. 

 

std::array<Matrix, 6> orientations = { 

    Matrix::Identity, 

    Matrix::CreateRotationX(XM_PI), 

    Matrix::CreateRotationX(XM_PI / 2), 

    Matrix::CreateRotationX(-XM_PI / 2), 

    Matrix::CreateRotationZ(XM_PI / 2), 

    Matrix::CreateRotationZ(-XM_PI / 2) 

}; 

 

for (int i = 0; i < 6; ++i) 

    m_faces[i] = std::make_unique<TerrainNode>(this, Square {-0.5f,-0.5f,1.0f}); 

    m_faces[i]->SetMatrix(orientations[i]); 

 

for (int i = 0; i < 6; ++i) 

    m_faces[i]->Generate(); 

Listing 6 - [SphericalQuadtreeTerrain.cpp] Creating a quadtree cube 

 

Next, the geometry generation code in the quadtree node is modified to spherify the 

terrain. Previously, the flat geometry is rendered at a height of 0 units. However, 

rendering at 0.5 units away from the origin will form a unit cube (side lengths of 1), 

and subsequently a sphere with a radius of 1. The code listing below shows a 

method to spherify the geometry. This method requires the terrain to be rendered at 

0.5 units away in its orientation, so then normalising each vertex will adjust it to form 

a sphere. 

 

Vector3 pos = Vector3(xx, 0.5f, yy); 

pos.Normalize(); 

 

PlanetVertex v; 
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v.position = pos; 

 

m_vertices.push_back(v); 

Listing 7 - [TerrainNode.cpp] Transforming a cube into a sphere 

 

Lastly, each quadtree node should increase/decrease in LOD depending on the 

camera position. To do this we need to have a split distance scalar. This scalar 

variable is the distance between quadtree depths at which to split at. To use it we 

first calculate the distance from the camera to the centre of the node, then check if 

it’s less than the split distance scalar multiplied by the scale of the node. The scale of 

the node is defined as 1/depth. 

 

To split and merge the nodes correctly, we need to define some rules. The node 

should only merge if it shouldn’t be divided and isn’t a leaf node, because to merge it 

needs child nodes. The node should only split if it is a leaf node (to prevent 

duplicated children) and it should be divided due to the camera being close enough 

to the scaled node distance. Also note this is a recursive function so if none of these 

conditions are satisfied then it will propagate down the tree. The code listing below 

puts these calculations and rules into practice. 

 

Function Update 

    Variable Divide -> If Distance to node is less than Scale x SplitDistance 

     

    If not a leaf node and Divide 

        Merge node 

 

    If leaf node and Divide 

        Split node 

    Else if not a leaf node 

        Foreach child node, update the child 

Listing 8 - [TerrainNode.cpp] Update function to determine if the node is to be split or merged 

 

With all of the above implemented, Figure 12 shows what the planet looks like at this 

stage. The vertices are randomly coloured, so it shows up clearer. 
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Figure 12 - Spherical 6-quadtree planet based off a cube 

 

5.2.3 Fixing terrain cracks 

As certain adjacent quadtree nodes can be at different 

depths, this will cause cracks in the geometry. To 

implement a fix for this, we first need to be able to 

locate a node’s neighbours. This requires a neighbour 

finding algorithm, the one implemented is based on 

the examples provided from Geier in 2017. The two 

algorithms are located in appendix 3 and 4.  

 

Next, whenever there is a LOD change, the neighbours of the split/merged node 

need to be notified of this change, so the geometry can be stitched together. The 

following function will call the stitch edge function on each of its neighbours. 

 

Function NotifyNeighbours 

    Variable Neighbours : List 

 

    Neighbours += GreaterThanOrEqualToNeighbours for North, East, South, West 

    Neighbours += GetSmallerNeighbours for North, East, South, West 

 

    Foreach Neighbour call function FixEdges 

Figure 13 - Terrain cracks 
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Listing 9 - [TerrainNode.cpp] Function to notify other neighbours of an LOD change 

 

To finish, the edges of the nodes’ geometry need to be stitched together. There are 

nine different index permutations of the geometry which are generated in a 

preprocessing step at the start of the program. The vertices themselves don’t need 

to be changed, we can just change which triangles are rendered. A part of the 

preprocessing step is shown below. 

 

/* 

    Generate ‘Top’ permutation 

*/ 

 

var triangles = [FlatPlane] 

var index = 0 

 

// Remove all even top triangles 

loop through triangles 

    if (index is even) and (triangle’s first point is 0) 

        remove triangle 

 

    increment index 

 

// The removed triangles are replaced by larger ones to match a lower LOD 

loop from x = 0 to gridsize - 2 incerement by 2 

    Add bigger triangle to fill the pair of triangles removed earlier 

Listing 10 - [SphericalQuadtreeTerrain.cpp] Generation of index permutations 

 

Now that all the permutations are generated, the penultimate step is to select the 

correct index permutation derived from which neighbours have a lower detail. The 

code listing below demonstrates this. There is an extra step at the end called to 

check if the detail difference is equal, if so it uses the same normals as its 

neighbour’s edge. This ensures smooth lighting across quadtree node boundaries. 

 

Function FixEdges 

    Variable Neighbours -> GetGreaterThanOrEqualNeighbours for all directions 

    Variable LowerLods  -> Get all depths from each of the Neighbour directions 
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    If no LowerLods -> Select permutation ‘None’ 

    If LowerLods[North] -> Select permutation ‘Top’ 

    If LowerLods[East]  -> Select permutation ‘Right’ 

    ... 

    If LowerLods[North] And LowerLods[East] -> Select permutation ‘TopRight’ 

    ... 

    Foreach Neighbour 

        If detail difference is equal to neighbour 

            Update vertex normals along edge to that of the neighbour 

Listing 11 - [TerrainNode.cpp] Choosing the index permutation for a quadtree node 

 

5.2.4 Optimisations 

The first optimisation implemented is the reuse of vertices. When splitting a 

quadtree, even indices of children will overlap with their parents. Instead of 

calculating the vertex position again, we can get the associated vertex from the 

parent, thus saving processing time. Listing 12 shows the pseudocode for getting the 

start x and y index for the parent, due to the child being in a particular quadrant of its 

parent. Listing 13 shows the modified vertex loop. 

 

switch Quad 

    NW: start_x = 0, start_y = 0 

    NE: start_x = gridsize / 2, start_y = 0 

    SE: start_x = gridsize / 2, start_y = gridsize / 2 

    SW: start_x = 0, start_y = gridsize / 2 

Listing 12 - [TerrainNode.cpp] Translating the current quadrant into start coordinates of the 

parent’s vertices 

 

PlanetVertex v 

 

if (hasParent && (x mod 2 == 0) && (y mod 2 == 0)) 

    // Translating to parent space 

    var x_half = start_x + x / 2 

    var y_half = start_y + y / 2 

 

    v = parent->GetVertex(x_half + y_half * gridsize) 
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else 

    ... Calculate vertex normally 

Listing 13 - [TerrainNode.cpp] Vertex loop reuses parent vertex if possible 

 

The second optimisation implemented was not rendering quadtree nodes if they’re 

beyond the visible horizon. The general formula for the distance to the horizon, 

where ‘h’ is height above the planet and ‘R’ is the radius of the planet is 𝑑 =

√ℎ(2𝑅 + ℎ) (Wikipedia, 2019). The pseudocode below shows the method for 

checking if the node should be visible or not. 

 

var distanceToNode = length(camera, nodeCentre) 

var heightAbovePlanet = length(camera - planetPosition) - planetRadius 

var horizon = root(heightAbovePlanet * (2 * planetRadius + heightAbovePlanet)) 

var isNodeVisible = distanceToNode < horizon 

Listing 14 - [TerrainNode.cpp] Culling nodes beyond the horizon 

 

5.3 Terrain Generation 

5.3.1 Noise 

To implement random terrain, a library called FastNoise. 

This is because it already implements fractal simplex 

noise. However, there needs to be more control over 

the terrain to create more realistic planets. As the planet 

is very large, using one noise map will not utilise all the 

space there should be more detail up close. The 

solution is to use multiple noise maps and layer them 

over each other. One for the general shape of the 

geometry and one 20x smaller for fine detail up close. 

 

float GetHeight(vec3 p) 

{  

    float mod = 1.0f; 

 

    // Initial noise map 

Figure 14 - Terrain 

generated with Simplex 

Noise 
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    float e = m_noiseMaps[0].GetNoise(p.x, p.y, p.z); 

 

    // Finer noise maps 

    for (int i = 1; i < numNoiseMaps, ++i) 

    { 

        mod *= settings.NoiseMaps[i].Mod; 

        h += m_noiseMaps[i].GetNoise(p.x, p.y, p.z) * mod; 

    } 

 

    return h; 

} 

Listing 15 - [SphericalQuadtreeTerrain.cpp] Function to calculate height of geometry at a 

particular point 

 

5.3.2 Biomes 

Biomes are implemented using noise maps, but this time 

instead of using noise to calculate the height, it uses it for 

moisture. At the start of the program a biome lookup map is 

generated from a settings file. The settings file lays out which 

biomes appear at certain moisture and elevation values. The x 

axis of the image represents moisture, and the y represents 

elevation. The biome lookup map is used on the CPU side to 

determine which texture to use, and the GPU side to sample the 

colour in the pixel shader. 

 

5.3.3 Water 

Water is implemented in a similar way to flat terrain. On flat terrain the standard way 

is to render a flat plane geometry at a predefined water level over the previous 

geometry. In this case a sphere is rendered as the 

geometry is spherical. The spherical water uses the 

same quadtree CLOD method as the terrain. This is 

because a pre-generated sphere isn’t smooth enough 

up close. The only difference between the water and 

the terrain is that the water is rendered using a different 

Figure 15 - 

Generated biome 

lookup map 

Figure 16 - Water layer 
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shader, and no noise values are sampled due to water being smooth. The water 

shader uses a very simple technique where the normal map texture coordinates are 

moved slowly over time. The code snippet below shows the only lines needed for 

this to work. 

 

cbuffer WaterBuffer : register(b2) { 

    float mScroll; // Updated every frame CPU side 

} 

 

... 

 

float2 scrolledUV = float2(v.UV.x + mScroll, v.UV.y + mScroll); 

float3 normalMap = NormalTex.Sample(Sampler, scrolledUV); 

Listing 16 - [WaterPS.fx] Scrolling the normal maps to produce a simple wave effect 

 

5.4 Atmosphere 

5.4.1 Atmospheric scattering 

Atmospheric scattering is implemented based off the code from GPU Gems 2 

(O'Neil, 2006). It uses volumetric rendering which means sampling various points 

along a ray to calculate a colour. To set it up, a sphere with a slightly larger radius of 

the planet is rendered. However, instead of using cull back, cull front is used which 

gives a silhouette of the sphere around the planet. Therefore, giving the effect of an 

atmosphere around a planet. The same shader can be adapted to work with surface 

scattering. This means from space the ground looks like it’s beneath the 

atmosphere. Plus, on the ground, distant hills are fainter due to the atmosphere in 

between just like in real life. This is different to fog however, because fog is the water 

vapour in the atmosphere. 
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Figure 17 - Atmosphere from space as seen from sunrise 

 

5.4.2 Clouds 

Adding clouds starts off with a similar method to the atmosphere. A sphere is 

rendered which is slightly larger than the planet, how much is at what level you want 

the clouds. The sphere is rendered with vertices only containing a position. This is 

because the vertex shader then implements a 3D simplex noise which can layer this 

noise to create fractal noise. In addition, on the CPU side, a timer is sent every frame 

to the shader to move the clouds. This fractal noise is then converted to grayscale. 

The code listing below shows this vertex shader. 

 

float3 pos = v_in.vPosition; 

pos.z += time; 

 

float col = snoise(pos); 

col += snoise(pos * 2) * 0.5f; 

col += snoise(pos * 4) * 0.25f; 

col += snoise(pos * 8) * 0.125f; 

 

... 

Output.Colour = float4(col, col, col, col); 

Listing 17 - [CloudsVS.fx] Clouds vertex shader using 3D noise 
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Figure 18Figure 18 - Picture of the planet with the cloud 

layer shows an example of what the clouds look like from 

space. When running the program, the clouds are 

animated, and due to the 3-dimensional noise the clouds 

actually change shape over time.   

 

 

 

5.5 Summary 

This section described all the details of implementation, and some extra bits of 

research that went into the knowledge required to do so. 

Figure 18 - Picture of the 

planet with the cloud layer 
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6 Test Strategy  

6.1 Introduction 

In this section are test strategies for examining the building blocks of the system, up 

to testing it against the intended requirements. Some sample tests are provided for 

the project. 

 

6.2 Unit Testing  

Unit testing is the name given to the process of testing the smallest testable parts of 

a system (Rouse, 2017). Unit tests are often performed on class methods as it’s 

generally the smallest part of a system which groups functionality. On average, 

systems can have hundreds, if not thousands of these methods. Therefore, unit tests 

are often automated as going through them manually is possible, but it takes much 

longer. Unit testing is often a part of test-driven development (TDD), which typically 

results in predictable systems. 

 

In this project, an example unit test would be testing the quadtree neighbour finding 

algorithm. The unit test would first set up a basic quadtree with some child nodes. 

Then by hand the tester would work out the neighbours expected in the test 

quadtree. Lastly, the unit test would then check if the neighbour’s algorithm function 

returns all the correct neighbours. 

 

6.3 System Testing 

System testing is the process of testing the entirety of the system to check whether it 

complies with the requirements (Software Testing Fundamentals, 2011). A black box 

testing strategy is generally used in conjunction with system testing. This strategy 

hides the implementation from the tester, unlike unit testing. System testing attempts 

to find errors mainly in behaviour. 

 

System testing is used in this project to check whether it meets the initial 

requirements. The requirements earlier in this project are laid out using MoSCoW. 

These can be easily carried out as system tests. 
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6.4 Other Types of Testing 

Another type of testing is integration testing. This is where unit tests are combined 

into groups and tested if they work together. An example using this project is fixing 

the quadtree terrain cracks. The individual units required to fix them include 

neighbour finding and a fix edges function. The goal is to test that the output from the 

neighbour unit successfully integrates with the fix edges function, hence fixing the 

cracks. 

 

Furthermore, acceptance testing is another type of testing which is used to evaluate 

the systems compliance with the business requirements. System testing is carried 

out by the developers, whereas acceptance testing is performed by the clients. If this 

project were being developed for a client, then this stage would be needed. 

However, there are no clients involved. 

 

6.5 Test Results 

Table 1 shows the unit test results. These are the smallest possible tests that can be 

carried out with the lowest level of functionality. 

 

Table 1 - Unit testing results 

Test # Test case Expected 

outcome 

Actual outcome Action 

required 

1 Sample quadtree 

constructed and 

neighbours are 

searched from 

within a node 

Quadtree 1_2_2 

neighbours with 

nodes 1_1_2_3 

and 1_1_2_4 

Quadtree 1_2_2 

neighbours with 

nodes 1_1_2_3 

and 1_1_2_4 

None 

2 Testing the 

IsRoot method 

on a quadtree 

root node 

True  True None 

3 Testing the 

IsRoot method 

on a quadtree 

child node 

False False None 
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Table 2 shows the system testing results. These test against the initial requirements 

of the system. 

 

Table 2 - System testing results 

Test # Test case Expected 

outcome 

Actual outcome Action 

required 

1 Planet contains 

clouds 

Animated clouds 

scroll across the 

planet 

Animated clouds 

scroll across the 

planet, but they 

disappear when 

the camera is 

underneath 

Fix the cloud 

layer to render 

when the 

camera is 

beneath them 

2 LOD works as 

intended 

Pressing ‘Q’ and 

flying close to the 

planet shows the 

LOD increasing 

Pressing ‘Q’ and 

flying close to the 

planet shows the 

LOD increasing 

None 

3 The terrain 

contains no 

cracks 

Terrain when up 

close contains no 

clear seams and is 

completely smooth 

Terrain when up 

close contains no 

clear seams and is 

completely smooth 

None 

 

 

6.6 Summary 

This chapter explained the fundamental testing techniques for systems. It covered 

how these strategies can be applied to this project, with some sample tests for 

reference. 

4 Quadtree 

GetDepth 

function tested 

on a nested child 

node 

4 4 None 
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7 Evaluation, Conclusions and Future Work 

7.1 Project Objectives 

In this project most of the objectives were achieved. The engine is able to render an 

Earth sized planet using level of detail techniques. Some degree of realism to the 

planet is added through the use of clouds, atmospheric scattering, water and 

biomes. There was a couple of other objectives like organising multiple planets and a 

star into a solar system. Unfortunately, even though progress was made on this, it 

wasn’t at a satisfactory level. With more time this side goal could have been 

accomplished. 

 

7.2 Self-Evaluation 

Reflecting back onto the start of this project, I was very ambitious. I planned out 

many features with the hope that this would challenge myself to complete more 

work. I combined my passion for space and games programming, which gave the 

perfect project which allowed me to be motivated the entire time. At the start of this 

project I knew the basics of DirectX and rendering, but nothing about rendering life 

sized planets. After many days of research, I managed to grasp the core concepts, 

but as development was underway I was still learning and researching techniques. 

 

My main weakness is underestimating the time it takes to complete a feature. The 

original Gantt chart incorporated all the initial features. There should have been more 

time assigned to some areas of the development to allow for leeway. My strengths 

included the general motivation to carry out the development. Plus, good researching 

skills needed to dig out rare information related to specific topics within LOD planets. 

 

7.3 Project Evaluation 

The level of detail system implemented works perfectly as intended. The biggest 

hurdle in the project was fixing the cracks in the terrain. Although in the early stages 

of the development, an implementation for fixing the cracks was in place, there was 

no smooth lighting. It was only nearing the end of the project when it was figured out 

how to do this, as there is very little documentation on smooth lighting across 

quadtree boundaries. One of the other methods tried for fixing these cracks was 
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geometry tessellation. When researching it, there was a specific piece of information 

missed. So, when it was implemented it was realised that it doesn’t actually fix 

terrain cracks. Due to the use of version control, attempted features and fixes like 

this could just be discarded, and development can continue from the last working 

version. Or, if features were just taking too long, the branch was left, and 

development may have resumed later when other features were finished. 

 

There were many more hurdles and failed features during development. Early on, 

GPU noise was experimented with to improve the render performance. However, in 

order for biomes to be based off elevation, or potential future work for colliding with 

the terrain, it has to be done on the CPU. Many optimisations were carried out 

throughout development, until it got to the point where the bottleneck was in the 

noise generation library itself. In an attempt to optimise further, a repository for a 

SIMD implementation of FastNoise (Peck, 2016) was stumbled upon. However, this 

didn’t work out, mainly due to the library working in integer sampling as opposed to 

floats. It was never figured out if it’s possible or not, it probably is but more research 

and time would be needed. Other failed features included: geomorphing (to remove 

popping), specular lighting (planet became way too shiny) and using double 

precision floats to try and remove camera jitter as planets moved, but this didn’t 

solve it. A last big hurdle was debugging, since there were so many nested quadtree 

nodes, without a game engine there was no method to find which node was which 

easily. So, testing for neighbours proved difficult at first but it eventually worked after 

giving each quadtree debug names to assist with this. 

 

Throughout the development, many optimisations were applied. The reason there 

was so much optimisation is because as a side project to this one, a planet sandbox 

application was developed. It was a fairly quick to develop it, and its purpose was to 

customise the planets by adjusting the properties, so they could be imported back 

into the main project. Optimisation was needed as when adjusting a slider, the planet 

would have to be regenerated. Eventually, the planet generation time was lowered to 

~60ms from seconds. The biggest time knocked off was due to the loading of 

textures and shaders every time the planet was generated. Secondary optimisations 

which still had significant performance increases were: using parents’ vertices when 

possible, pre-generated index permutations, texture arrays and multithreading. 
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Furthermore, the planet sandbox application supported the objective of being used 

as a general engine. It was fairly straightforward to compile the existing engine as a 

library, which was used to develop the sandbox application. 

 

7.4 Applicability of Findings to the Commercial World 

As mentioned earlier, one of the objectives was to turn the project into a general 

engine to be used for games which require procedural planetary rendering. This has 

commercial potential to be used in a variety of games. Especially if collision is 

implemented into the engine. Additionally, the skills learnt during the development 

could be very valuable to companies working on similar projects. In the past few 

years there have been many games based on this premise, and probably more to 

come. 

 

7.5 Conclusions 

In conclusion, this project was a success. A generic planetary renderer has been 

developed which supports biomes, water, atmospheres and clouds. A side project 

used this renderer to be able to customise these planets and provided many hours of 

fun during development. The knowledge gained from this project is massively useful 

and can certainly be reapplied in the future. 

 

7.6 Future Work 

One limitation is the flexibility of the system. The planet class consists of multiple 

renderers: clouds, terrain, water and atmosphere. Currently, to add a component, 

more renderers need to be coded into the class. This is where a component system 

should have been used. This way, renderers can be unique components which can 

be added or removed from the planets. It makes much more sense to use this way in 

a generic engine. 

 

There is a fairly simple optimisation that could be made when rendering. View 

frustum culling could be used to prevent the rendering of non-visible terrain nodes. 

This combined with the horizon-based culling would only render terrain nodes in view 

and would increase the framerate. The second optimisation which could be added is 
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compute shaders. As discussed earlier, GPU noise is faster, but we need access to 

the new geometry to be able to do collision, plus various other things. Instead, a 

compute shader can be run to generate the geometry, then the results streamed 

back to the CPU to be used. This would improve the framerate when flying around 

as geometry is generated quicker. 

 

Lastly, to render very large worlds, and travel between Earth sized planets, there 

needs to be some sort of floating origin. If there was enough time this could have 

been implemented, as the sufficient research had already been done. One technique 

is whenever there has been an appropriate distance travelled, all the objects in the 

scene are shifted back, so the camera is then back at the origin (Kerbal Space 

Program, 2013). This means floating point errors cannot accumulate over time and 

produce shaky movement due to insufficient precision. The other method is to move 

all the objects in the scene around the camera, so the camera always stays at the 

origin. 
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Appendix 1 – Project Proposal 

Name:  Matthew Lowe    Course: Computer Games 

Development 

Discussed with (lecturer):     Nick Mitchell/Laurent Noel 

    

Current Modules (and previous modules if Computing or direct entrant) 

Standard games course modules, no optional modules. 

 

The Project Title 

Procedurally Generated Planets 

 

Project Context 

I intend to generate and render planets which could be as large as Earth. The terrain 

will be procedurally generated, containing different biomes. The rendering will make 

use of Levels of Detail (LOD) to be able to render a planet so large. You’ll be able to 

view the planet from space, or from the surface, in space there will be a visible 

atmosphere effect. I also intend to add multiple planets to the scene to form a small 

planetary system, with a central star with multiple planets/moons, simulating basic 

gravity of them orbiting each other. 

 

The main issue is finding a way to render planets so large. I’ll have to use a method 

of rendering different levels of detail depending on where the camera is (on the 

surface/in space). 

 

Specific Objectives 

1. Render a sphere with LOD 

2. Procedurally generated terrain 

3. Render atmosphere 

4. Terrain biomes + water 

5. Newtonian gravity in a planetary system 

 

References 
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[1] Schaal, J., 2017. Procedural Terrain Generation. A Case Study from the Game 

Industry. Game Dynamics, pp.133–150. 

 

[2] Aizawa, K. et al., 2008. Constant time neighbor finding in quadtrees: An 

experimental result. 2008 3rd International Symposium on Communications, Control 

and Signal Processing. 

 

[3] Elek, O., 2009. Rendering Parametrizable Planetary Atmospheres with Multiple 

Scattering in Real-Time. 

 

[4] Nowell, P., 2005. Mapping a Cube to a Sphere. Math Proofs. Available at: 

http://mathproofs.blogspot.co.uk/2005/07/mapping-cube-to-sphere.html [Accessed 

April 22, 2018]. 

 

[5] Ulrich, T., 2000. Continuous LOD Terrain Meshing Using Adaptive Quadtrees. 

Gamasutra. Available at: 

https://www.gamasutra.com/view/feature/131841/continuous_lod_terrain_meshing_.

php?page=1 [Accessed April 22, 2018]. 

 

[6] Pi, X. et al., 2006. Procedural Terrain Detail Based on Patch-LOD Algorithm. 

Technologies for E-Learning and Digital Entertainment Lecture Notes in Computer 

Science, pp.913–920. 

 

Potential Ethical or Legal Issues 

There may be textures which I’ll have to find online, for example: grass and water, to 

make the terrain more realistic. I’d make sure these textures are royalty free 

otherwise it could be copyright infringement. 

 

Resources 

I will make use of a graphics API, DirectX which supplies all the tools needed to 

create my project. Other resources include the papers I have referenced, which 

contain possible methods I’ll need to use to be able to implement the goals I set out 

in my project. 
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Potential Commercial Considerations - Estimated costs and benefits 

If this was done commercially the costs would come from paying the salaries for the 

developers. The project would be very worthwhile from a games company’s 

perspective, since the project could be used as a general game engine to create 

multiple games from. For example, a space simulator, flight simulator, or an on-land 

game with a procedurally generated world. This saves development time greatly. 

Additionally, this project could potentially need artists, for creating realistically 

textured terrain, which includes more salaries. 

 

Proposed Approach 

 

1. [Week 1]  Basic DirectX Engine 

2. [Week 2]  Render flat quadtree terrain [5] [6] 

3. [Week 3]  Map terrain to a sphere [4] 

4. [Week 3]  Use procedural method for generating random terrain [1] 

5. [Weeks 4-5]  Implement finding quadtree neighbours to fix detail differences 

[2] 

6. [Weeks 5-7]  Terrain biomes 

7. [Week 8]  Render water 

8. [Weeks 8-9] Render realistic looking planetary atmosphere [3] 

9. [Week 10] Orbital mechanics + spaceship 

10. [Week 11] Add other planetary bodies 
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Appendix 2 – Technical Plan 

Computing Project Technical Plan 

 

Name: Matthew Lowe     Mode: Full time 

Course: Computer Games Development  Supervisor: Gareth Bellaby 

 

Title 

Procedurally Generated Planets 

 

Summary 

The topic of the project is the rendering of a large, detailed planet. This has two 

aspects: rendering a large planet (up to the size of Earth) and secondly generating 

the terrain on the surface of the planet using procedural generation. The terrain will 

have various biomes including oceans, mountains and deserts, with simple trees and 

vegetation. A side goal of the project is to assemble a number of planets into a star 

system, along with simulating gravitational effects and being able to see the planets 

in the distance from afar. 

 

The most viable solutions, in my opinion, include using QuadTrees for controlling 

LOD (levels of detail) which allows the computer to render a variable number of 

vertices, depending on the distance to the camera. There also has to be a resolution 

to the problem of rendering very distant objects. There are a couple of ways to go 

about this, one is to use a logarithmic or inverted depth buffer, which modifies the 

distribution to work well on large scales. The other method is to use three different 

cameras, one rendering close up, the next rendering midrange, and the final very 

distant objects. 

 

I will use an agile based methodology for developing this project, so I can use 

iterative development to achieve many small goals in fast succession, leading to 

accomplishing the larger goals at the end. 

 

Deliverables 

An executable file running the graphical demonstration. 
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Constraints 

The main constraint I have is time. I suspect there will be a considerable amount of 

tweaking to get the planet generation looking appealing. In addition to this, not all of 

the side goals I have set may not be possible to achieve within the time frame. 

 

A secondary limitation may be hardware. The software will take up full usage of the 

CPU and GPU to be able to render large planets which could be the simulated size 

of Earth. Whether I will need to optimise or compromise on the engine significantly is 

something I will find out during development. Current hardware may be fast enough 

already, or the fact that my main emphasis is on achieving a level-of-detail system of 

rendering large planets, this may not be a problem. 

 

Key Problems 

The fundamental problem is rendering real scale planets. The amount of memory to 

store the Earth at 1km resolution, assuming we only store positions, would use ~5.7 

terabytes of disk space. This obviously shows it's very unrealistic to store the 

geometry of a planet on a standard 1TB hard drive, let alone in the PC's RAM. My 

project will allow the player to roam the surface of the planet, needing much higher 

resolution than this. We will need some level of detail system in place to amend this. 

 

A second problem is rendering extremely distant objects. If the player is on a planet 

and they can see to the horizon from eye level, we will need to render objects around 

10 miles away; yet the sun is 91 million miles away. There are, of course, other 

planets millions of miles away which may need to be rendered too. In graphics 

programming, there needs to be a way to overcome this which aren't possible 

without requiring extra work. 

 

The last problem is storing such large and small-scale values to work with each 

other. We need to store positions on planets, as well as positions of planets in the 

star system. Using the traditional approach will not give enough accuracy on a 

planetary surface if you're also storing it in the same way as planets are stored in the 

system. 
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System and Work Outline 

I'll be using C++ and the DirectX11 SDK to produce the software. My first step is to 

create the Windows application and use DirectX to draw primitives to the screen. 

This also includes simple shaders. Next, I'll be organising the code into a more 

structured form in classes, which makes it easier to work on in the long run. 

 

The subsequent stage is to start on a basic level of detail system. By creating and 

rendering one Quadtree which can increase or decrease in detail in relation to the 

camera, will form the basis of what we need to create a planet. Now, by arranging six 

of these Quadtrees into a cube, we can use some maths to visually transform it into 

a sphere. 

 

Following on from the fundamental setup of a Quadtree sphere, we can start on the 

procedural generation. I'll be starting off with a fairly simple means of terrain 

generation, using 3D Simplex Noise. The problem with 2D noise is that it doesn't 

wrap very well around a sphere. There are methods to reduce the distortion but will 

never completely rid of it at the poles. However, using 3D noise will wrap allow it to 

wrap seamlessly. The sphere should now start to look like a randomly generated 

planet, though there'll be issues to fix. Depending on the resolution differences of 

neighbouring Quadtrees, there will be gaps at the boundaries. I will need to use 

some algorithm to fix this. There are two steps to fixing this. The first one is to find 

the Quadtrees neighbours, which seems trivial at first, however, that is not the case. 

As Quadtree nodes may be surrounded by much lower detail nodes or higher detail 

nodes, you need a Quadtree neighbour algorithm to find them all. The second step is 

to resolve the gap, methods include averaging every odd vertex, or removing every 

odd vertex, on nodes which have higher detail neighbours. 

 

Once this is working I'll be experimenting with improved planet generation. Adding 

biomes is one which can be done by sampling more noise, then assigning a 

particular range of values to a biome type. One biome, in particular, I'll be adding is 

an ocean. Which can be rendered using shader techniques. I'd also like to add 

textures, trees and vegetation to the planet, which vary according to the biome. The 

textures will need to be interpolated between biomes too, and there are well-known 

solutions for this and shouldn't be a major problem. Adding trees will be as simple as 
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distributing them accordingly depending on the type of biome, the vegetation will just 

be grass, which can be done with shaders on the GPU. 

 

Lastly, I wish to create multiple randomly generated planets and form a random star 

system. Simulating gravitational effects between the star, planets and moons. As a 

project on its own, this would be fairly simple to accomplish, however, when you take 

into account transitions from space to planets it suddenly creates an array of 

problems. There is not enough depth buffer precision to render these large and small 

scales in the same way. A solution is to use multiple depth buffers each with a 

different near and far plane. So when you render the world you decide which ones 

are drawn in which buffer depending on the distance to the camera. A second 

solution is to use a logarithmic depth buffer, which changes the distribution of the 

values in the buffer to give better resolution in the distance, as traditionally most of 

the precision is near the camera. Another problem which stems from the combining 

of large and small scales is the precisions of the positions of planets. For example, 

assuming the star is at the origin, you'll be dealing with values around ~9x10^9 at 

meter resolution. Unfortunately, single precision floats do not provide good accuracy 

at these ranges, producing very rapid camera jitter. A solution is to have the world 

move around the camera, meaning the camera is always at the origin. This gives an 

enormously better precision when moving around when the relative positions are 

much smaller. Instead, the far distant objects now have this reduced precision, but 

they're millions of miles away so to the player the errors are unnoticeable. 

 

During development, I'm going to follow along with the lines of the class layout 

below. I have chosen to use multiple interfaces which allow me to add different 

implementations for parts of the project if I ever need to. The other reason is that it 

abstracts away the underlying functionality to minimise coupling. 

 

• Body 

o IBody 

▪ IPlanet 

▪ IStar 

• Render 
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o DirectX Effect 

o IRenderable 

o IPlanetRenderer 

o IStarRenderer 

o Terrain 

▪ ITerrain 

▪ SphericalTerrain 

▪ Quadtree node 

• Scene 

o Camera 

o IStarSystem 

o ILightSource 

 

 

There are a significant amount of skills that I will be learning along the way as this a 

project I've never attempted before. Fortunately, the graphics module gave me a 

solid basis of knowledge to work from, therefore, I can focus on learning the 

important parts of the project e.g. Quadtrees, Procedural Generation, Large world 

rendering; eliminating having to learn DirectX beforehand. After the project, I hope to 

have learnt all of these topics enough to be able to apply them to other work 

afterwards. 

 

Project Activities 

Gantt chart is attached at the end of the document. 

 

Risk Analysis 

Risk Severity Likelihood Action 

Data loss High Low Make sure the 

project is always 

pushed to GitHub, 

and store backups 

elsewhere. 
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Major hurdles 

taking too long to 

overcome 

Medium Likely Continue on other 

activities which 

don’t depend on 

that hurdle when 

appropriate and 

take time to do 

additional research 

to help process the 

problem. 

Other university 

modules needing 

extra work 

Medium Medium Be time efficient, 

and only work on 

the most critical 

features of the 

project in the 

meantime. 

Illness Low Low Allow contingency 

time in the 

schedule, try to 

complete the 

project ahead of 

schedule. 

Failure to create a 

working application 

by the final 

deadline 

High Low Focus on the 

fundamentals first, 

and slowly build on 

top if progress is 

slow. 

 

Options 

I considered using a more cross-platform route of using OpenGL for graphics and 

the MinGW C++ compiler which would allow the software to run on Unix based 

systems as well as windows. I didn't choose this as I don't have as much experience 

in OpenGL as DirectX, and the demand to run it on Linux isn't high. This approach 

implies the only logical IDE to use is Microsoft Visual Studio, as it supports graphical 
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debugging with DirectX, which none other IDE's use, and no extra setup for the 

Microsoft C++ compiler. I also deduced that it wouldn't work well for mobile-based 

platforms as the graphics and processing will be very demanding. Consequently, the 

FPS will suffer. 

 

I considered using a Waterfall approach to the project. However, due to the number 

of difficult hurdles I assume I'd have to overcome, it won't suffice for if I work linearly. 

Agile methodologies allow me to work on other features which may not depend on 

fundamentals. 

 

Potential Ethical or Legal Issues 

A potential legal issue to look out for is the patent surrounding Simplex Noise. The 

patent only covers image generation where it is shown on a display, whereas I will 

be using it for terrain generation. Regardless, there is still OpenSimplex noise, which 

has no patent attached. 

 

The second thing I need to look out for is copyrights on textures. As I am going to 

use textured terrain I will be sourcing out textures online. I will only use textures 

which are royalty-free to avoid this. 

 

Commercial Analysis 

Factor name Description Is this a cost 

or a benefit 

Estimated 

Amount 

Estimate of 

when paid 

Working hours Assuming 

average salary 

of £20 and 350 

hours of work 

Benefit £7,000 Last working 

day of every 

month 

Visual Studio 

Professional 

standalone 

license 

IDE used for 

development 

Cost £378 Pre-

development 

Microsoft 

Windows Pro 

Operating 

system 

Cost £220 Pre-

development 
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Graphic artist A freelance 

graphic artist to 

create various 

textures for a 

few hours work 

Cost £200 End of 

development 

 

Employability Contribution 

This project will drastically improve my portfolio. Being able to put so many concepts 

together into one application would be a great achievement which would surely 

impress employers, especially games studios. The large-scale graphics techniques 

I'll use in my project seems to be a fairly unique concept. Whilst has been done a 

large number of times before, it doesn't seem to be a technique new games 

programmers would try out frequently. My aim is to produce a complete project and 

include all my goals. Showing that I can successfully integrate multiple concepts to 

complete it. Additionally, this the first piece of software I will write which is heavily 

concerned with speed. Therefore, I assume I will develop optimisation skills to 

achieve a high FPS despite the number of computations required to render dynamic 

LOD planets. 
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Appendix 3 – Finding neighbour nodes 1 

std::vector<TerrainNode*> TerrainNode::GetSmallerNeighbours(TerrainNode 

*neighbour, int dir) const 

{ 

    std::vector<TerrainNode*> neighbours; 

    std::queue<TerrainNode*> nodes; 

 

    if (neighbour) 

        nodes.push(neighbour); 

 

    switch (dir) { 

        case North: { 

            while (nodes.size() > 0) { 

                if (nodes.front()->IsLeaf()) 

                    neighbours.push_back(nodes.front()); 

                else { 

                    nodes.push(nodes.front()->GetChild(SW)); 

                    nodes.push(nodes.front()->GetChild(SE)); 

                } 

 

                nodes.pop(); 

            } 

 

            break; 

        } 

         

        case South: { 

        ...Other directions 

    } 

 

    return neighbours; 

} 
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Appendix 4 – Finding neighbour nodes 2 

TerrainNode *TerrainNode::GetGreaterThanOrEqualNeighbour(int dir) const 

{ 

    auto parent = m_parent; 

    auto self = this; 

     

    switch (dir) { 

        case North: { 

            if (!parent) return nullptr; 

            if (parent->GetChild(SW) == self) return parent->GetChild(NW); 

            if (parent->GetChild(SE) == self) return parent->GetChild(NE); 

 

           auto node = parent->GetGreaterThanOrEqualNeighbour(dir); 

 

            if (!node || node->IsLeaf()) 

                return node; 

 

            return (parent->GetChild(NW) == self) ? node->GetChild(SW) : node-

>GetChild(SE); 

 

            break; 

        } 

 

        case South: { 

        ... Other directions 

    } 

 

    return nullptr; 

} 


